Null Cartan curve variations in 3D semi-Riemannian manifold

نویسندگان

چکیده

The aim of this study is to investigate the variations Bishop frame curvatures for null Cartan curves in semi-Riemannian manifolds. Killing equations terms along curve especially derived. are used interpret movement charged particles a magnetic field. particle motion through examined as an application study. It found that traces trajectory form cubic during its vector According results obtained, example trajectories presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curve Shortening Flow in a Riemannian Manifold

In this paper, we systemally study the long time behavior of the curve shortening flow in a closed or non-compact complete locally Riemannian symmetric manifold. Assume that we have a global flow. Then we can exhibit a a limit for the global behavior of the flow. In particular, we show the following results. 1). Let M be a compact locally symmetric space. If the curve shortening flow exists for...

متن کامل

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Curve Flows and Solitonic Hierarchies Generated by (Semi) Riemannian Metrics

We investigate bi–Hamiltonian structures and related mKdV hierarchy of solitonic equations generated by (semi) Riemannian metrics and curve flow of non–stretching curves. The corresponding nonholonomic tangent space geometry is defined by canonically induced nonlinear connections, Sasaki type metrics and linear connections. One yields couples of generalized sine–Gordon equations when the corres...

متن کامل

Riemannian Multi-Manifold Modeling

This paper advocates a novel framework for segmenting a dataset in a Riemannian manifold M into clusters lying around low-dimensional submanifolds of M . Important examples of M , for which the proposed clustering algorithm is computationally efficient, are the sphere, the set of positive definite matrices, and the Grassmannian. The clustering problem with these examples of M is already useful ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe journal of mathematics and statistics

سال: 2021

ISSN: ['1303-5010']

DOI: https://doi.org/10.15672/hujms.569423